The influence of mechanical loading on skeletal muscle protein turnover

Amy J Hector, Chris McGlory, Stuart M Phillips

Abstract


Skeletal muscle plays a fundamental role in human health and so understanding the biological processes that regulate skeletal muscle mass in health and disease is critical. We know that resistance exercise increases rates of muscle protein synthesis (MPS) in a mechanistic target of rapamycin complex 1 (mTORC1)-dependent manner. However, the exact molecule(s) that ‘sense’ mechanical loading and translate that signal to a biochemical event leading to upregulation of MPS remains elusive. Similarly, in response to periods of unloading there is a decrease in MPS and potentially a transient increase in muscle protein breakdown MPB, but the relative contribution of MPS and MPB to muscle atrophy remains unknown. The aim of this review is to briefly outline the molecular mechanisms that regulate skeletal muscle protein mass in response to both mechanical loading and unloading (disuse). We discuss recent developments in the field of molecular exercise biology as well as present a working hypothesis as to the physiological basis for muscle disuse atrophy.

Keywords


Resistance exercise; mTORC1; skeletal muscle; mechanical load; muscle atrophy

References


American College of Sports M. 2009. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687-708.

Apró W, Blomstrand E. 2010. Influence of supplementation with branched-chain amino acids in combination with resistance exercise on p70S6 kinase phosphorylation in resting and exercising human skeletal muscle. Acta Physiol 200(3):237-248.

Areta JL, Burke LM, Ross ML, Camera DM, West DW, Broad EM, Jeacocke NA, Moore DR, Stellingwerff T, Phillips SM, Hawley JA, Coffey VG. 2013. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol 591(Pt 9):2319-2331.

Aspuria PJ, Tamanoi F. 2004. The Rheb family of GTP-binding proteins. Cell Signal 16(10):1105-1112.

Baar K, Esser K. 1999. Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276(1 Pt 1):C120-127.

Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ. 2001a. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704-1708.

Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. 2001b. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3(11):1014-1019.

Booth FW, Tseng BS, Fluck M, Carson JA. 1998. Molecular and cellular adaptation of muscle in response to physical training. Acta Physiol Scand 162(3):343-350.

Breen L, Stokes KA, Churchward-Venne TA, Moore DR, Baker SK, Smith K, Atherton PJ, Phillips SM. 2013. Two weeks of reduced activity decreases leg lean mass and induces "anabolic resistance" of myofibrillar protein synthesis in healthy elderly. J Clin Endocrinol Metab 98(6):2604-2612.

Brocca L, Cannavino J, Coletto L, Biolo G, Sandri M, Bottinelli R, Pellegrino MA. 2012. The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms. J Physiol 590(Pt 20):5211-5230.

Burd NA, West DW, Moore DR, Atherton PJ, Staples AW, Prior T, Tang JE, Rennie MJ, Baker SK, Phillips SM. 2011. Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr 141(4):568-573.

Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM. 2010. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 5(8):e12033.

Burridge K, Chrzanowska-Wodnicka M. 1996. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12:463-518.

Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS. 2002. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol 88(1-2):50-60.

Castets P, Lin S, Rion N, Di Fulvio S, Romanino K, Guridi M, Frank S, Tintignac LA, Sinnreich M, Ruegg MA. 2013. Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy. Cell metabolism 17(5):731-744.

Chaillou T, Kirby TJ, McCarthy JJ. 2014. Ribosome Biogenesis: Emerging Evidence for a Central Role in the Regulation of Skeletal Muscle Mass. J Cell Physiol.

Chen YW, Nader GA, Baar KR, Fedele MJ, Hoffman EP, Esser KA. 2002. Response of rat muscle to acute resistance exercise defined by transcriptional and translational profiling. J Physiol 545(Pt 1):27-41.

Chesley A, MacDougall JD, Tarnopolsky MA, Atkinson SA, Smith K. 1992. Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol (1985) 73(4):1383-1388.

Churchward-Venne TA, Breen L, Di Donato DM, Hector AJ, Mitchell CJ, Moore DR, Stellingwerff T, Breuille D, Offord EA, Baker SK, Phillips SM. 2014. Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial. Am J Clin Nutr 99(2):276-286.

Churchward-Venne TA, Burd NA, Mitchell CJ, West DW, Philp A, Marcotte GR, Baker SK, Baar K, Phillips SM. 2012. Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J Physiol 590(Pt 11):2751-2765.

Crossland H, Kazi AA, Lang CH, Timmons JA, Pierre P, Wilkinson DJ, Smith K, Szewczyk NJ, Atherton PJ. 2013. Focal adhesion kinase is required for IGF-I-mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1-associated pathway. Am J Physiol Endocrinol Metab 305(2):E183-193.

Csibi A, Cornille K, Leibovitch MP, Poupon A, Tintignac LA, Sanchez AM, Leibovitch SA. 2010. The translation regulatory subunit eIF3f controls the kinase-dependent mTOR signaling required for muscle differentiation and hypertrophy in mouse. PLoS One 5(2):e8994.

Csibi A, Tintignac LA, Leibovitch MP, Leibovitch SA. 2008. eIF3-f function in skeletal muscles: to stand at the crossroads of atrophy and hypertrophy. Cell cycle 7(12):1698-1701.

Cunningham ML. 2002. A mouse is not a rat is not a human: species differences exist. Toxicol Sci 70(2):157-158.

Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ. 2005. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 19(3):422-424.

Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, Timmons JA, Phillips SM. 2011. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol (1985) 110(2):309-317.

de Boer MD, Selby A, Atherton P, Smith K, Seynnes OR, Maganaris CN, Maffulli N, Movin T, Narici MV, Rennie MJ. 2007. The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J Physiol 585(Pt 1):241-251.

Delorme TL, Watkins AL. 1948. Technics of progressive resistance exercise. Arch Phys Med Rehabil 29(5):263-273.

Dickinson JM, Drummond MJ, Fry CS, Gundermann DM, Walker DK, Timmerman KL, Volpi E, Rasmussen BB. 2013. Rapamycin does not affect post-absorptive protein metabolism in human skeletal muscle. Metabolism 62(1):144-151.

Dickinson JM, Fry CS, Drummond MJ, Gundermann DM, Walker DK, Glynn EL, Timmerman KL, Dhanani S, Volpi E, Rasmussen BB. 2011. Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J Nutr 141(5):856-862.

Dirks ML, Wall BT, Snijders T, Ottenbros CL, Verdijk LB, van Loon LJ. 2014. Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta physiologica 210(3):628-641.

Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N. 2010. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta 1804(3):433-439.

Drummond MJ, Dickinson JM, Fry CS, Walker DK, Gundermann DM, Reidy PT, Timmerman KL, Markofski MM, Paddon-Jones D, Rasmussen BB, Volpi E. 2012. Bed rest impairs skeletal muscle amino acid transporter expression, mTORC1 signaling, and protein synthesis in response to essential amino acids in older adults. Am J Physiol Endocrinol Metab 302(9):E1113-1122.

Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E, Rasmussen BB. 2009a. Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol-London 587(7):1535-1546.

Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E, Rasmussen BB. 2009c. Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587(Pt 7):1535-1546.

Egan B, Zierath JR. 2013. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell metabolism 17(2):162-184.

Fluck M, Carson JA, Gordon SE, Ziemiecki A, Booth FW. 1999. Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol 277(1 Pt 1):C152-162.

Foster KG, Fingar DC. 2010. Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285(19):14071-14077.

Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, Walker DK, Dhanani S, Volpi E, Rasmussen BB. 2011. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skeletal muscle 1(1):11.

Gibson JN, Smith K, Rennie MJ. 1988. Prevention of disuse muscle atrophy by means of electrical stimulation: maintenance of protein synthesis. Lancet 2(8614):767-770.

Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N. 1999a. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13(11):1422-1437.

Gingras AC, Raught B, Sonenberg N. 1999c. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913-963.

Gkogkas C, Sonenberg N, Costa-Mattioli M. 2010. Translational control mechanisms in long-lasting synaptic plasticity and memory. J Biol Chem 285(42):31913-31917.

Glover EI, Phillips SM, Oates BR, Tang JE, Tarnopolsky MA, Selby A, Smith K, Rennie MJ. 2008. Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. J Physiol 586(Pt 24):6049-6061.

Goldberg AL. 1968. Protein synthesis during work-induced growth of skeletal muscle. J Cell Biol 36(3):653-658.

Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC, You JS, Hornberger TA. 2011a. The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. J Physiol 589(Pt 22):5485-5501.

Goodman CA, Mayhew DL, Hornberger TA. 2011d. Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal 23(12):1896-1906.

Guertin DA, Sabatini DM. 2007. Defining the role of mTOR in cancer. Cancer Cell 12(1):9-22.

Gundermann DM, Walker DK, Reidy PT, Borack MS, Dickinson JM, Volpi E, Rasmussen BB. 2014. Activation of mTORC1 signaling and protein synthesis in human muscle following blood flow restriction exercise is inhibited by rapamycin. Am J Physiol Endocrinol Metab 306(10):E1198-1204.

Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214-226.

Hamilton DL, Philp A, MacKenzie MG, Baar K. 2010. A limited role for PI(3,4,5)P3 regulation in controlling skeletal muscle mass in response to resistance exercise. PLoS One 5(7):e11624.

Henriksson J. 1977. Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J Physiol 270(3):661-675.

Hershey JW. 1991. Translational control in mammalian cells. Annu Rev Biochem 60:717-755.

Holloszy JO. 1967. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242(9):2278-2282.

Hvid LG, Suetta C, Aagaard P, Kjaer M, Frandsen U, Ortenblad N. 2013. Four days of muscle disuse impairs single fiber contractile function in young and old healthy men. Exp Gerontol 48(2):154-161.

Ikemoto M, Nikawa T, Takeda S, Watanabe C, Kitano T, Baldwin KM, Izumi R, Nonaka I, Towatari T, Teshima S, Rokutan K, Kishi K. 2001. Space shuttle flight (STS-90) enhances degradation of rat myosin heavy chain in association with activation of ubiquitin-proteasome pathway. FASEB J 15(7):1279-1281.

Ingber DE. 2006. Cellular mechanotransduction: putting all the pieces together again. FASEB J 20(7):811-827.

Inoki K, Li Y, Xu T, Guan KL. 2003a. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17(15):1829-1834.

Inoki K, Li Y, Zhu T, Wu J, Guan KL. 2002. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648-657.

Inoki K, Zhu T, Guan KL. 2003b. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577-590.

Jacobs BL, Goodman CA, Hornberger TA. 2013a. The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting. J Muscle Res Cell Motil 35(1): 11-21.

Jacobs BL, You JS, Frey JW, Goodman CA, Gundermann DM, Hornberger TA. 2013b. Eccentric contractions increase the phosphorylation of tuberous sclerosis complex-2 (TSC2) and alter the targeting of TSC2 and the mechanistic target of rapamycin to the lysosome. J Physiol 591(Pt 18):4611-4620.

Jewell JL, Guan KL. 2013. Nutrient signaling to mTOR and cell growth. Trends Biochem Sci 38(5):233-242.

Jewell JL, Russell RC, Guan KL. 2013. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14(3):133-139.

Jones SW, Hill RJ, Krasney PA, O'Conner B, Peirce N, Greenhaff PL. 2004. Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. FASEB J 18(9):1025-1027.

Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D. 2002. Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr 76(2):378-383.

Klossner S, Li R, Ruoss S, Durieux AC, Fluck M. 2013. Quantitative changes in focal adhesion kinase and its inhibitor, FRNK, drive load-dependent expression of costamere components. Am J Physiol Regul Integr Comp Physiol 305(6):R647-657.

Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, Williams J, Smith K, Seynnes O, Hiscock N, Rennie MJ. 2009. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol 587(Pt 1):211-217.

Lagirand-Cantaloube J, Offner N, Csibi A, Leibovitch MP, Batonnet-Pichon S, Tintignac LA, Segura CT, Leibovitch SA. 2008. The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J 27(8):1266-1276.

Lamming DW, Sabatini DM. 2013. A Central role for mTOR in lipid homeostasis. Cell metabolism 18(4):465-469.

Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149(2):274-293.

Laplante M, Sabatini DM. 2013. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 126(Pt 8):1713-1719.

Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB. 2008. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358(13):1327-1335.

Li R, Narici MV, Erskine RM, Seynnes OR, Rittweger J, Pisot R, Simunic B, Fluck M. 2013. Costamere remodeling with muscle loading and unloading in healthy young men. J Anat 223(5):525-536.

Ma XM, Yoon SO, Richardson CJ, Julich K, Blenis J. 2008. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 133(2):303-313.

Mahoney SJ, Dempsey JM, Blenis J. 2009. Cell signaling in protein synthesis ribosome biogenesis and translation initiation and elongation. Prog Mol Biol Transl Sci 90:53-107.

McGlory C, White A, Treins C, Drust B, Close GL, Maclaren DP, Campbell IT, Philp A, Schenk S, Morton JP, Hamilton DL. 2014. Application of the [gamma-32P] ATP kinase assay to study anabolic signaling in human skeletal muscle. J Appl Physiol (1985) 116(5):504-513.

Mitchell CJ, Churchward-Venne TA, Bellamy L, Parise G, Baker SK, Phillips SM. 2013. Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLoS One 8(10):e78636.

Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, Phillips SM. 2012a. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (1985) 113(1):71-77.

Mitchell CJ, Churchward-Venne TA, West DWD, Burd NA, Breen L, Baker SK, Phillips SM. 2012b. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol 113(1):71-77.

Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, Prior T, Tarnopolsky MA, Phillips SM. 2009. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr 89(1):161-168.

Murton AJ, Constantin D, Greenhaff PL. 2008. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta 1782(12):730-743.

O'Neil TK, Duffy LR, Frey JW, Hornberger TA. 2009. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587(Pt 14):3691-3701.

Pearson RB, Dennis PB, Han JW, Williamson NA, Kozma SC, Wettenhall RE, Thomas G. 1995. The principal target of rapamycin-induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J 14(21):5279-5287.

Phillips SM, Glover EI, Rennie MJ. 2009. Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol (1985) 107(3):645-654.

Phillips SM, McGlory C. 2014a. CrossTalk proposal: The dominant mechanism causing disuse muscle atrophy is decreased protein synthesis. J Physiol 592(Pt 24):5341-5343.

Phillips SM, McGlory C. 2014d. Rebuttal from Stuart M. Phillips and Chris McGlory. J Physiol 592(Pt 24):5349.

Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. 1997. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 273(1 Pt 1):E99-107.

Philp A, Hamilton DL, Baar K. 2011. Signals mediating skeletal muscle remodeling by resistance exercise: PI3-kinase independent activation of mTORC1. J Appl Physiol (1985) 110(2):561-568.

Reid MB, Judge AR, Bodine SC. 2014a. CrossTalk opposing view: The dominant mechanism causing disuse muscle atrophy is proteolysis. J Physiol 592(Pt 24):5345-5347.

Reid MB, Judge AR, Bodine SC. 2014d. Rebuttal from Michael B. Reid, Andrew R. Judge and Sue C. Bodine. J Physiol 592(Pt 24):5351.

Richardson CJ, Broenstrup M, Fingar DC, Julich K, Ballif BA, Gygi S, Blenis J. 2004. SKAR is a specific target of S6 kinase 1 in cell growth control. Curr Biol 14(17):1540-1549.

Richter EA, Hargreaves M. 2013. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93(3):993-1017.

Sale DG. 1988. Neural adaptation to resistance training. Med Sci Sports Exerc 20(5 Suppl):S135-145.

Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(2):290-303.

Sanchez AM, Csibi A, Raibon A, Docquier A, Lagirand-Cantaloube J, Leibovitch MP, Leibovitch SA, Bernardi H. 2013. eIF3f: a central regulator of the antagonism atrophy/hypertrophy in skeletal muscle. Int J Biochem Cell Biol 45(10):2158-2162.

Sonenberg N, Hinnebusch AG. 2007. New modes of translational control in development, behavior, and disease. Mol Cell 28(5):721-729.

Symons TB, Sheffield-Moore M, Chinkes DL, Ferrando AA, Paddon-Jones D. 2009. Artificial gravity maintains skeletal muscle protein synthesis during 21 days of simulated microgravity. J Appl Physiol (1985) 107(1):34-38.

Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, Mascher H, Blomstrand E. 2008. Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol 102(2):145-152.

Tesch PA, von Walden F, Gustafsson T, Linnehan RM, Trappe TA. 2008. Skeletal muscle proteolysis in response to short-term unloading in humans. J Appl Physiol (1985) 105(3):902-906.

Thom JM, Thompson MW, Ruell PA, Bryant GJ, Fonda JS, Harmer AR, Janse de Jonge XA, Hunter SK. 2001. Effect of 10-day cast immobilization on sarcoplasmic reticulum calcium regulation in humans. Acta Physiol Scand 172(2):141-147.

Thorlund JB, Jakobsen O, Madsen T, Christensen PA, Nedergaard A, Andersen JL, Suetta C, Aagaard P. 2011. Changes in muscle strength and morphology after muscle unloading in Special Forces missions. Scand J Med Sci Sports 21(6):e56-63.

Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. 2007. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9(3):316-323.

Wall BT, Cermak NM, van Loon LJ. 2014. Dietary protein considerations to support active aging. Sports Med 44 Suppl 2:185-194.

Wall BT, Dirks ML, van Loon LJ. 2013a. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing research reviews 12(4):898-906.

Wall BT, Snijders T, Senden JM, Ottenbros CL, Gijsen AP, Verdijk LB, van Loon LJ. 2013c. Disuse impairs the muscle protein synthetic response to protein ingestion in healthy men. J Clin Endocrinol Metab 98(12):4872-4881.

Wall BT, van Loon LJ. 2013. Nutritional strategies to attenuate muscle disuse atrophy. Nutr Rev 71(4):195-208.

Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG. 2001. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 20(16):4370-4379.

West DW, Burd NA, Tang JE, Moore DR, Staples AW, Holwerda AM, Baker SK, Phillips SM. 2010. Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol (1985) 108(1):60-67.

West DW, Kujbida GW, Moore DR, Atherton P, Burd NA, Padzik JP, De Lisio M, Tang JE, Parise G, Rennie MJ, Baker SK, Phillips SM. 2009. Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol 587(Pt 21):5239-5247.

West DW, Phillips SM. 2012. Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training. Eur J Appl Physiol 112(7):2693-2702.

Wolfe RR. 2006. The underappreciated role of muscle in health and disease. Am J Clin Nutr 84(3):475-482.

You JS, Lincoln HC, Kim CR, Frey JW, Goodman CA, Zhong XP, Hornberger TA. 2014. The Role of Diacylglycerol Kinase zeta and Phosphatidic Acid in the Mechanical Activation of Mammalian Target of Rapamycin (mTOR) Signaling and Skeletal Muscle Hypertrophy. J Biol Chem 289(3):1551-1563.

Zhao X, Wang Z, Zhang J, Hua J, He W, Zhu S. 2013. Estimation of total body skeletal muscle mass in Chinese adults: prediction model by dual-energy X-ray absorptiometry. PLoS One 8(1):e53561.


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Cell Mol Exerc Physiol (CMEP) Online ISSN: 2049-419X Prefix DOI: 10.7457